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Constitutive equations for heat conduction in general relativity 
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Universite de Paris (VI), Wpartement de Mecanique Theorique (ERA du CNRS) 
Tour 66,4 Place Jussieu, 75230 Paris Cedex 05, France 
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Abstract. A heat flux constitutive equation is derived in three approximations from a general 
functional constitutive equation which describes heat conduction in so-called ‘simple’ 
thermodeformable media in general relativity. The three approximations correspond to 
materials having a so-called ‘fading memory’, an ‘infinitely short memory’, and materials of 
the ‘rate-type’, respectively. The first approximation leads to an integral constitutive equa- 
tion which, after inversion of the integral operator, yields a differential law that: (i) exhibits 
the relaxation process needed to guarantee a propagation of heat disturbances at a speed 
smaller than that of light; (ii) is essentially spatial; (iii) satisfies the requirements now im- 
posed in continuum physics, in particular, the principle of objectioity as formulated by the 
author or the rheological inoariance of Oldroyd. The equation obtained has the same three- 
dimensional limit as the spatial part of Kranys’ equation for rigid heat conductors. However, 
Kranys’ equation was not objective. The second approximation leads to a heat retardation 
process prohibited by the second principle of thermodynamics. The third approximation 
may contain the other two as particular cases. Within the frame of the approximations made 
for isotropic materials, it is shown that interactions between the different transport pheno- 
mena, eg, heat flow and viscosity, cannot be accounted for. 

1. Introduction 

A current paradox of classical physics is that, if one assumes Fourier’s law of conduction, 
then heat propagates instantaneously, thus at infinite speed. The situation is even 
worse in relativistic physics, for perturbations of any physical field should not propagate 
at a velocity greater than that of light. Indeed, if a direct covariant generalization of 
Fourier’s law as first indicated by Eckart (1940) (and also proposed by Bressan 1967) is 
supposed, then it can be shown, by studying the Cauchy problem for such a general 
relativistic heat conducting fluid (cf Marle 1969), that the characteristic manifolds are 
space-like hypersurfaces. This implies a signal propagation at a speed greater than c, 
the light velocity in vacuum, a fact in direct contradiction with the basic hypotheses of 
relativity physics. To remedy this undesirable fact, Kranys (1966a, b, 1967) has proposed 
a relativistic generalization of the heat conduction law proposed earlier by Cattaneo 
(1948,1958) and Vernotte (1958) with a view to solving the same paradox but within the 
framework of classical physics. The modified law proposed by Kranys who introduces a 
relaxation of heat flux proves to be satisfactory from a purely mathematical viewpoint. 
Mahjoub (1971a, b) (also Boillat 1971) has shown that the characteristic manifolds of the 
corresponding general relativistic Cauchy problem were time-like, hence eliminating 
any risk of propagation at infinite velocity. In fact, it is shown that the system of equa- 
tions obtained when one takes account of Kranys’ law either is not strictly hyperbolic 
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in the sense of Leray and then admits a solution in a certain Gevrey class of functions, or is 
strictly hyperbolic and then admits a unique solution in a Sobolev class of functions. 
Further work on heat conduction with Kranys’ law as its starting point was done by 
Kranys himself (1972a, b). Also, in an excellent monograph, Stewart{ 1971) demonstrated 
by a kinetic-theory argument that the maximum phase velocity associated with heat 
conduction phenomena basically described by an equation of the Kranys’ type was of the 
order of 0 .8~ .  

However we shall not use any of the arguments of kinetic theory in this paper as its 
purpose is not to find such an upper bound for the propagation of heat disturbances. The 
subsequent development is drawn along a purely phenomenological line. It is of course 
preferable that both attitudes, the kinetic theory and the phenomenological approaches, 
yield results which are in agreement. Yet we have the firm belief that theoretical con- 
tinuum physics is now on solid ground, almost axiomatized as much as geometry (cf 
Truesdell and No11 1965), with a whole body of fundamental concepts, axioms and 
theorems deduced from the latter, thus forming a true mathematical physics. It needs 
only to be supplemented with experiments in order to measure the phenomenological 
constants introduced in the formulation. The same is true of general relativistic con- 
tinuum physics in which we have tried to introduce a general formalism and to construct 
the corresponding adequate principles (Maugin 1972a, b, c, 1973a, b, c, e, f). For instance, 
constitutive equations-ofwhich the heat conduction law constitutes an example-which 
are needed to close the underdetermined system of field equations, are supposed to 
satisfy several principles of formulation (in classical continuum mechanics, see Eringen 
1967 chap 5 ;  in relativistic physics, Maugin 19730. Among these principles (or re- 
quirements), that of material frame indifference, or objectivity, or rheological invariance 
according to the different authors, is certainly that which bears the most profound 
physical significance. It expresses the fact that any constitutive equation which illustrates 
the response of a material to a solicitation-in the case of heat conduction, the response 
to a deviation from thermodynamical equilibrium-should be the same for all observers. 
This is not only a requirement of form invariance (covariance) that would be auto- 
matically satisfied by use of tensorial analysis. It also imposes a certain function-or 
functional-dependence on the constitutive dependent variables (eg, the heat flux vector) 
and dictates what independent arguments can or cannot be used in the constitutive 
equations. Making use of the notion of an observer, the statement of material frame 
indifference in general relativity can only take a local form (along the worldline of such 
an observer). Two such statements have been proposed independently, one by Oldroyd 
(1970), the other by the author (Maugin 1972a, 1973f, g). Kranys’ equation satisfies none. 
Moreover, from our viewpoint, Kranys’ proposal is not entirely satisfactory for two other 
reasons : (i) instead of postulating a law as Kranys did, it should be possible to deduce a 
satisfaciory heat conduction law from a general theory of constitutive equations in 
relativistic continuum physics ; (ii) Kranys (1966a) (also Boillat 1971) considers a four- 
dimensional conduction law which is not space-like. It is our opinion that he so intro- 
duces too many unknowns, ie, the fourth component of his law. He justifies his viewpoint 
by saying that there could exist a nonzero invariant density of heat but we do not follow 
his argument. 

The aim of the present study is therefore clear : to deduce from a general functional 
constitutive equation which is constructed with the help of the different principles of 
formulation that are nowadays accepted, and which obeys the objectivity or rheological 
invariance requirement, an approximate heat conduction law which : (i) is essentially 
spatial (three independent components) ; (ii) exhibits the relaxation phenomenon 



Heat conduction in general relativity 467 

necessary to suppress the paradox of infinite velocity of propagation ; (iii) corresponds to 
a simple symmetry of the material (ie, isotropy, thus allowing the description of heat 
conduction in all fluids and in isotropic solids). We indicate three ways to approximate 
the general functional (on a time interval) constitutive equation which describes so-called 
‘simple’ thermodeformable media (cf Maugin 1972b, c). Each way corresponds to a 
different continuity hypothesis concerning the functional. First, the heat conducting 
medium is supposed to possess a ‘fading memory’ (a well known concept in modern 
viscoelasticity theory, cf Truesdell and No11 1965). By use of nonlinear functional 
analysis tools, this hypothesis leads, after approximation, to an integral constitutive 
equation for heat flux which, in turn, by inversion of the integral operator, yields a 
differential equation that exhibits the desired relaxation process. The second hypothesis 
concerns heat conducting media which are supposed to possess an ‘infinitely short 
memory’. It yields a heat flux differential constitutive equation that exhibits a retarda- 
tion phenomenon. Such a form should be excluded after the second principle of thermo- 
dynamics. The third hypothesis is that on which is based the description of so-called 
rate-type materials (cf Maugin 19730 which are peculiar cases of ‘simple’ materials. It is 
shown that the expressions resulting from the first and second hypotheses are included in 
those resulting from the third. All constitutive equations and some of their generaliza- 
tions indicated satisfy the principle of objektivity. It is also shown that the simplest heat 
flux constitutive equation which satisfies the requirements set forth such as causality, 
the second principle of thermodynamics, and the general principles of formulation, 
in particular, the principle of objectivity-equation (57)--, has a common limit- 
equation (6l)-with Kranys’ equation for rigid heut conductors in classical physics. It is 
further shown that, while the general constitutive equations on which the present study 
is based are likely to encompass the interactions between the different transport pheno- 
mena (eg, heat flow and viscosity in fluids), there is no coupling between these phenomena 
within the frame of the approximations considered here. We are thus led to doubt the 
validity of a heat flux equation recently proposed by Stewart (see equation (81) herein) 
for, so far, no coupling of the type indicated by him seems to be possible. 

We see that the notion of thermal disturbances propagating at finite speed is linked 
to the concept of functional constitutive equation for the heat flux. We mention that 
different cases based on the last concept have recently been treated in nonrelativistic 
physics, in particular, by Gurtin and Pipkin (1968) in their nonlinear theory of rigid heat 
conductors with memory, and by McCarthy (1970a, b) in his theory of nonlinear thermo- 
mechanical materials with memory. However, these authors do not give approximations 
of the type given hereafter. 

Below we recall the notation and some definitions useful in the sequel. In particular, 
we recall what we mean by a locally released reference state for the description of the 
deformation field of a general relativistic continuum. In 0 2, the relativistic covariant 
gradient of temperature and the invariant gradient of temperature are introduced. The 
local form of the second principle of thermodynamics referred to as the Clausius-Duhem 
inequality m deformable media and the corresponding dissipation inequality are set forth 
in 0 3. The notion of ‘simple’ thermodeformable medium and the principles of formula- 
tion of constitutive equations are given in 9 4. The first approximation in the form of an 
‘integral’ heat conduction law is given in 0 5 after a precise mathematical definition of a 
material which has a ‘fading memory’. The 9 6 is devoted to the comparison of the equa- 
tion so obtained with that of Kranys. The alternative formulation based on the notion of 
materials having an ‘infinitely short memory’ is given in tj 7. The general case of rate- 
type thermodeformable materials and approximations corresponding to isotropic 
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materials described by constitutive equations linear in the different objectiue variables 
are studied in 5 8. 
Notation (see the previous papers by the author). Let V4 be the riemannian four- 
dimensional manifold of general relativity theory. Its metric gap(xA) is normal hyperbolic 
with lorentzian signature + 2. x', ;i = 1,2,3,4,  is a local chart of M = ( V4, gap) with x 4  
time-like. In the sequel, Greek indices run from one to four and Latin indices run from 
one to three. V, denotes the covariant derivative based on g, ,  . Commas denote partial 
differentiation. ua is the four-velocity such that g a p u a d  = -c2.  616s indicates the 
invariant derivative in the ua direction, ie, (6/6s) = uaVa, with U' = 6xa/6s. P duZ/6s is 
the four-acceleration such that gapu"tifl = 0. &, indicates Lie differentiation with respect 
to the four-vector field U". Parentheses around a set of indices denote sympetrizationt. 
Let xu  = X a ( X K ,  s) be the diffeomorphism : E: x R H M which describes the time-like 
trajectory (qXK) of a 'particle' labelled ( X K )  parametrized with respect to the proper time 
s of ( X K ) ,  a time-like parameter that increases monotonically along (Ce,K). At any event 
point p ( s )  E ( q x K )  M, (P)  is the three-dimensional hypersurface locally orthogonal to 
(WXK). Thus M,(P)  is locally space-like. At a certain event point P,(s = T ~ )  E (VxK), let 
E; be the three-dimensional euclidean hyperplane tangent to M,(P,).  X K  are chosen, 
for the sake of simplicity, as Cartesian coordinates in E;. They are constants along 
(qXK). We say that (!E;, X K )  defines a locally released reference state (LRRS), for the ortho- 
normal basis GK, K = 1,2,3, at Po in E; defines an inertialframe (for the 'particle' ( X K ) )  
in which gravitation is removed (cf Maugin 1973e, f) .  This is an ideal state which, in 
agreement with the principle of equivalence, can be defined locally and not for an ex- 
tended material body as a whole. A't each event point P(s) E (WxK), the operator 

(1)  pa,(^) gf g+(P) + C- 2ua(P)u,(P) 

Pa$'!? = P a y ,  P a p "  = 0, P t  = 3, (2) 

which satisfies 

is the operator of projection on to M,(P). A covariant or contravariant tensor defined 
on M,(P)  is said to be 'orthogonal to U,' and referred to, for short, as a PU tensor field. 
Such a tensor takes essentially spatial values. The operation of projection on to M,(P)  
obtained by application of the operator Pap to all indices of a tensor field A?:. defined at 
P(s) is denoted by (A=!;.),. For a PU tensor field A";,, we have 

since Pas is idempotent and PU. Note that we shall use implicitly the following rule in the 
paper : if any tensor B;y.  is contracted with a PU tensor A;!-, then 

Aclp..B;..;. = 018.. B....  .... A. . . .  ( ap..), .  

Deformcfion (cf Maugin 1971a, c, 1973d, e). The direct and inverse relativistic de- 
formation gradients with respect to the LRRS are defined, at p ( s )  E (WXK), by 

x;; = (g), x i u ,  = 0, (3) 
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These are so-called bitensor fields defined on E: 0 M ,  and PU four-vector fields on V4. 
The second of equations (4) holds for XK and s are independent variables, ie, (d/ds)XK = 0. 
We have 

( 5 )  K a - 6 K  x;xfjs = pap, X.,aXL - L, 
where df is the Kronecker symbol in E;. Then the relativistic Green deformation tensor 

CKL and its reciprocal C MN are given by 
- 1  

C d s )  s Pa/As)x”Ks)xP,(s), (6) 

CMNC,, = c MN(s) 3 P“B(s)X~(s)XNp(s). (7) 
- 1  - 1  

These are invariants in V4 (although they depend on s) but Cartesian tensorst in E;. 

PU tensor fields defined as 
The relativistic velocity gradient tensor and the relativistic rate of strain tensor are 

e,@ s PzyPf;rVpu” = PfBV,ua = (VBua)L, (8) 

c a p  e(a8) = (V(Bua))L (9) 

Gap = tLP,,, (10) 

and 

respectively. One can verify that aaB is also expressible as 

and 

Reciprocally, 

(12) -- ~ C K L  - 2aaBx;xP, = (f.uPaa)Lx;xP,. 
6s 

In fact, if xu = Ta(XK, s) is viewed as a coordinate transformation, then equation (6) 
defines th;  transported by convection of Pas and (&JL is nothing but the convected deriva- 
tive-noted Dc-with respect to the proper time s. Indeed, let Aai” be a PU tensor field, 
then (cf Schouten 1954, p 106) 

AK..Q = A“..” IC B 
.L - .B X..aXL.. . XQ”, 

t Nevertheless. we keep the notation with subscript and superscript indices for these tensors. One may define 
other types ofinvariant and covariant deformation tensors: see Maugin 1973d, e in which along bibliography on 
recent works on relativistic continuum mechanics is given. 



470 G A Muugin 

since it is easily checked that (Maugin 1973b, f )  

Finally, it is important to remark that every field can be expressed at any event point on 
( q X K )  as a function of X K  and s if the motion xu = X^”(XK, s) is supposed to be known up 
to that point. Also, if A,P, ,p  is a completely PU covariant tensor, then 

(ZA,p.. ,) ,  = &uAaP..p 

2. Relativistic gradient of temperature 

We have shown elsewhere (Maugin 1973e) that, if one assumes, following Tolman and 
Ehrenfest (1930) (also Tolman 1934), that, in a stationary gravitational field, the thermo- 
dynamical equilibrium at event point P(s) E ( V X K )  was represented by T(x’) = constant 
where Tis  the ‘invariant’ temperature (cf Landau and Lifsh,itz 1958), then the thermody- 
namical disequilibrium in the neighbourhood of P(s) was represented by the deviation 
from the formula Tu)(YxK) = 0. In fact, with T(xA) defined as (the metric is here written 
in so-called adapted coordinates) 

8 being the proper thermodynamical temperature, we have shown, by computing the 
expansion of T about P(s) along a spatial geodesic contained in M,(P)  with the aid of 
Fermi coordinates, that 

Equation (19) defines the relativistic gradient of temperature in covariant form while 
equation (20) defines the invariant (obtained by convection) gradient of temperature. 
The equations (18) assert that, up to terms of the second order, the Ehermodynamical 
disequilibrium in the vicinity ?f P(s) E (VXK) is measured either by 8, or by 8,. It is 
remarkable that the quantity 8, appears quite naturally in other approaches to relati- 
vistic dissipative materials, for instance, in those concerned with an approximate solu- 
tion to the relativistic Boltzmann equttion (cf Marle 1969, Vignon 1969; also Ehlers 
1971, Stewart 1971). Also, the variable 8, appears naturally in the local statement of the 
second principle of thermodynamics for relativistic continua (cf Eringen 1970, Maugin 
1 97 1 b). 

3. Elements of thermodynamics of relativistic continua 

Here we consider a pure phenomenological approach? and use no arguments of kinetic 
t Other works on relativistic phenomenological thermodynamics not referred to in the text are, among many, 
those of Schopf (1963). Bressan (1964), Muller (1969), Alts and Muller (1972). 
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theory (see Stewart 1971 for a kinetic-theory approach). We assume that there are 
neither electromagnetic fields nor spin so that the energy-momenta of the continuous 
medium can be described by a symmetric energy-momentum tensor Tup which, at 
event point P(s) E (WxK),  admits a decomposition on to M,(P)  and along U" given by 
(cf Eckart 1940)t 

with 

q" = -(T"PUp)l, 

tb" tfl" = t"0, fa%, = 0. 
q"I.4, = 0, 

Here p is the invariant relativistic density of matter, E is the specific internal energy, q" is 
the PU heat flux four-vector, and tp" is the PU relativistic stress tensor. The conservation 
equations of relativistic continuum mechanics are 

(VpT"p)l = 0, u,VBTilP = 0, V,(pu") = 0 (23) 

which are the first Cauchy equation of the motiun, the energy conservation equation, and 
the relativistic continuity equation respectively. For dissipative processes, these are 
complemented by a local statement of the second principle of thermodynamics : 

(24) 

where q" is the entropy flux and q is the specific entropy. By using the second and the third 
of equations (23), and taking account of (21), it can be shown that (24) takes the 'Clausius- 
Duhem inequality' form (Maugin 1971b, Eringen 1970)$ 

2 - 4" q = -+qu", e V,q" 2 0, 

in which qi is the specific Helmholtz free energy. I t  can be shown that the recoverable 
part Rtaz of the stress and q are derivable (see, for instance, Maugin 1973a) from the 
potential I) so that the inequality (25) reduces to the 'production of entropy', or dissipa- 
tion, form : 

1 .  ep(q) = --que, + Dtflaaap 2 0. (26) 

Dtpa is the dissipative part of tpz. In agreement with the first of equations (13), we can 
introduce the invariant convected forms of q" and Dtp" : 

e 

(27) 

(28) 

D T K L  = D pa - t XKpX:". 
K - XK Q = .,zq", 

Reciprocally, 
DtSa = DTKLXBXa q" = x;QK, K L .  

t This expression is acceptable in the sense that the nonrelativistic limit of the second of equations (23) yields 
the usual equation of conservation of energy of classical continuum mechanics. 
3 The Clausius-Duhem inequality is given for more involved processes-electromagnetic media with spin- 
and used as a tool to deduce the recoverable parts of the constitutive equations in Maugin (1973a. c). 
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Then, on account of the expressions (20), (1 1) and ( 5 ) ,  the inequality (26) can be written 
in a completely invariant form : 

We see from the inequalities (26) and (29) that 8, and o,, (respectively O K  and ( S / S s ) C K L )  
are the generalized affinities associated with the generalized fluxes q" and Dtpa (respectively 
QK and DTKL) respectively. In a naive theory of irreversible processes, one disregards the 
interactions between the different transpprt phenomena so that, in view of equation 
(26), one takes, for instance, q" linear in 8,. That is, for isotropic media, 

= - X P ~ @ , ,  or Q K  = - X  6 K L e L .  (30) 
This is the covariant generalization of Fourier's linear law proposed by Eckart (1940)t. 
As DtSa and q" are supposed to  be uncoupled, the heat conduction term verifies the second 
principle of ther*modynamics in the fprms (26) and (29) iftand only if is greater or equal 
to zero since ~ / 6 ~ ~ ~ L ~ p ~  PaB(s)B,(s)BB(s) 2 0 for all s (e, is PU hence space-like), and 
~ 1 6 i ~ & ~ p o ~  6'&lK8, > 0. The equation (30) leads to the difficulties mentioned in the 
introduction. Eringen (1970, equation (6.30)), using a representation theorem for 
isotropic tensor;valued functions, has given an exact nonlinear expression for 
q" = q"(p, 0, uWI, e,) when the interactions between transport phenomena are not neglec- 
ted in isotropic media. However, his expression would yield the same sort of difficulty 
and it is far too complex to  be of any use. In the sequel, we shall focus our attention on 
functional (integral or differential) equations, and use the somewhat axiomatic approach 
proposed by the author (Maugin 1972a, b, c, 1973b, e, f, g) in relativistic continuum 
physics. 

4. General functional form for the heat conduction law 

By relativistic 'simple' materialst, we understand materials for which the various 
constitutive dependent variables, such as the stresses, the heat flux,. . . , depend function- 
ally at  most on the first gradients of the basic constitutive independent variables, the 
latter being, for instance, in the case of thermodeformable materials, and according to 
the old terminology, the 'causes', ie, the motion xa and the thermodynamical temperature 
8. The first gradients considered are carefully constructed quantities in a manner such 
that simultaneity and causality problems arising in curved space-time are solved. In 
fact, these are systematically obtained by expansion of the basic variables about their 
values at an event point P(s) E ('ig,K) along a spatial geodesic (hence includFd in M,(P)) 
issued from that point§. In the present case, these gradients are x i  and 8, defined by 
equations (3) and (19) respectively. According to the principle of determinismy, the 
present 'effects' eg, the values of the dependent constitutive variables (stresses, heat 
flux) at event point M(s = z) E (WxK) at which we examine the constitutive equations, 

t It can also be obtained by using kinetic-theory arguments (cf Ehlers 1971, p 62). 
3 This notion was introduced in Maugin (1972a, b, c). 
8 These gradients are constructed for different continuous media, eg, classical deformable media, oriented 
media, magnetized media,. . . , in a paper by the author Maugin (1973e). 
fi The principles of formulation of constitutive equations in classical continuum physics are given in Truesdell 
and Noll (1965) and Eringen (1967, chap 5) .  The equivalent study for relativistic continuum physics will be 
given in a paper by the author (in preparation). 
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are determined by $1 past and present ‘causes’, ie, all values taken by the independent 
variables ( x i  and e,) at event points P(s < 7) E (WXK) along the trajectory of (XK) in 
space-time. Thus, even though a special configuration, the LRRS defined at 
P,(s = to -= t) E (WXK), is used to  measure the deformation, the principle of determinism 
asserts that the constitutive equations of a simple thermodeformabl: material are, to 
start with, general functionals on s E ( - CO, t] of the arguments x i  and 6, (the constitutive 
equations cannot depend explicitly on the position xa in space-time as would be easily 
shown in special relativity by considering invariance under space-time translations). 
That is, 

s E ( -  CO, r ] .  The same functional dependence holds true for E and ?,I. The notation 
f (7) = F[A(s ) ] ,  s E ( -  CO, 51 means that the value off  at M(r) depends on all values 
taken by the argument A for S E ( - C O , T ] .  Equivalently, the functional can also be 
written as $[A(s)lA(t)], s E ( -  CO, T [ .  In that case, it is considered to be a functional of 
A on s E ( -  CO, z[ and a function in the usual sense of A(s) .  At this point, we need not 
specify the topological frame for the functionals (ie, the norm, the smoothness of the 
functionals, the existence of FrCchet derivatives.. . ; these notions are needed to study 
approximations of functionals). In writing the formulae (31), we have made use of the 
axiom of equipresence. By this we mean that, unless it is forbidden by a general physical 
principle (such as the second principle of thermodynamics or the material symmetry of 
the medium), all ‘causes’ should contribute to all ‘effects’. This axiom (cf Truesdell and 
No11 1965) serves as a guideline in the formulation of constitutive equations for involved 
processes. Furthermore, the systematic introduction of seemingly too numerous 
independent variables in each constitutive equation allows, in fact, to take account of 
the different coupling effects which are overlooked in primitive treatments. For instance, 
the functional dependence introduced in the second of equations (31) means that the 
present value of the heat flux depends on all past values of the temperature gradient- 
this is quite natural-but also, on all past values of the deformation gradient, and this, 
in a time-functiohal way. This means that, if equations (3 1) describe transport phenomena, 
the different transport phenomena in general interact. For instance, viscosity can pro- 
duce a heat flux, and a gradient of temperature can produce a stress and a deformation. 
Finally, the function dependence on the parameters X K  in equations (3 1) is introduced 
to  take account of possible inhomogeneities. The degree of symmetry of the material 
is obviously not specified at this stage. 

It is further required that constitutive equations for a relativistic thermodeformable 
material satisfy the so-called principle of material frame indigerenee in relativity (PMIR ; 
also referred LO as the principle of objectivity) of which two forms have been proposed 
by the author (Maugin 1972a, applied in Maugin 1972b, 1973b, and Maugin 1973f, g). 
The second form reads? : PMIR constitutive equations-represented by tensor fields with 
values on V“-of an ideal relativistic continuous deformable medium must be objective ; 
that is, they must be invariant with respect t o  superposition of an arbitrary local Herglotz- 
Born rigid body motion. 

A local Herglotz-Born rigid body motion is such that o&) = 0 for all s in an open 
neighbourhood Y(WxK) of (WXK). Oldroyd (1970) has proposed independently another 
t We refer the reader to Maugin (19736 g) for a precise mathematical statement of this principle. The statement 
of the PMIR given here appears to be a relativistic generalization of the classical principle of objectivity as given 
by, for instance, Truesdell and No11 (1965). 
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principle referred to as the rheological invariance requirement in which he advises the 
use of convected quantities in constitutive equations. However, in contrast with 
Oldroyd's statement, the present statement of the PMIR provides necessary and suficient 
conditions to reduce the form of constitutive equations. The motivation for such a 
principle clearly appears in the results of its application. We have shown (Maugin 1973f) 
that, if the functional constitutive equations (3 1) are to satisfy the above statement of the 
PMIR, they must reduce, necessarily and suficiently, to the forms : 

tS"(M(s = T ) )  = X&)F(T)X:(T), 

in which (( E ( -  CO, TI) 

q"(M(s = T ) )  = x : (T )Q~(T)  (32) 

s E ( -  CO, T [ .  C,, and 0, have Been defined in equations (6 )  and (20) respectively. It 
follows from equations (33) that the rheological behaviour of the continuous material 
at event point x a ( X K ,  T )  only depends on information pertaining to the 'particle' ( X K ) .  
Hence, an observer co-moving with this 'particle' always determines the same type of 
response for the material submitted to the same type of solicitations ; in particular, if he 
performs some experiment, he always determines the same values of the phenomeno- 
logical constants needed to  describe the behaviour of the material. We thus see the 
profound operational significance of the PMIR. Without such a principle, we are not sure 
at all to construct constitutive equations that can be experimentally studied in a labora- 
tory. Of course, the notion of observer used above may appear as somewhat restrictive 
to those familiar with classical continuum physics. Nevertheless, it is obvious that, as 
a consequence of the curvature of space-time and general nonsimultaneity between two 
general event points, the statement of objectivity or material indifference can be but 
local in general relativity. Finally, it seems from the forms of equations (33) that the 
LRRS plays a peculiar role in the application of the PMIR. This is only because the LRRS 
was used to define the deformation field. It does not appear in the statement given above 
for the PMIR which is universal. In fact, we shall see below that we can free the formu- 
lation from a reference to the LRRS which, therefore, will have served as a useful inter- 
mediary. I t  is to be noted that the constitutive equations (33) obviously are rheologically 
invariant in the sense of Oldroyd (1970). 

We now have to face two problems : (i) to find a manageable form instead of ( 3 3 k  
in particular for the second of these since we are interested in heat conduction-by 
specializing the functional QK; (ii) to specify the symmetry of the material. Below, we 
shall give three different ways to approximate the functionals. Regarding the second 
problem, we shall be content with the study of materials that possess the largest degree 
of symmetry, that is, isotropy. A remark is in order concerning this problem. The 
notion of material symmetry is definitely linked to our everyday notion of a three- 
dimensional euclidean physical world (eg, the notion of crystallographic group). It 
would be nonsense to speak of isotropy by using covariant formalism in curved space- 
time (although this is often done). It follows that the maierial symmetry ofthe continuous 
medium-ie, the study of the isomorphisms of a material 'particle' on to itself (Truesdell 
and No11 1965)--even though it is relativistic, must be studied in a three-dimensional 
euclidean frame. The inertial frame provided by the LRRS is such a frame. 
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5. Integral form of a heat conduction law 

We focus our attention on the second of equations (33) although the same method 
would also apply to the first of these. It proves more convenient to work with the 
quantity $, defined as 

&,(TI = c,,(?)Q”(T), Q K ( T )  = ~ K L ( T ) Q , ( ? ) .  (34) 

On account of equations (27H28) and (6)-(7), it is a simple matter to show that 

Q L ( T )  = G . ( ? ) q a ( ? L   AT) = XKa(T)&,(?). (35) 

Since Q K  is already a function of C M N ( ~ )  whose form is not specified, &, has a functional 
dependence of the same type as QK. That is, 

&L(M(s = T ) )  = 6 L [ c M N ( s ) 7  e M ( t ) l  C M N ( T ) ?  e (T ) ,  XKI, (36) 
5 E (- CO, T ] ,  S E ( -  CO, ?[. 

In order to simplify the algebra, we consider, in this section, that there are no inter- 
actions between the diflerent transport phenomena so that we can neglect the dependence 
upon the history of the deformation tensor (temperature gradients are considered as the 
basic ‘causes’ of heat flux). This is equivalent to considering the medium as being 
locally rigid, ie, we can set C,,(s) = bKL for all s. This is obviously wrong if the medium 
considered is, for instance, a fluid. We shall be satisfied with this simplifying hypothesis, 
which, as we shall see later, does not bring any damage to the derivation. In these 
conditions, the equation (36) reduces to 

&A4 = 6 L [ e K ( T  - S ” T T ) l ,  S’E [O, + CO). (37) 

In this functional we have made a change of time variable by introducing s‘ = T - 5.  
Moreover, we assumed, by dropping the explicit dependence on the parameters X K ,  
that the continuous medium was homogeneous. 

We consider that &, depends functionally on 8, only through the differential history 
0, of 0, defined as 

OK(?, S’) e,(?) - e K ( T  - S’), B,(T, 0) E 0. (38) 

Hence (e is a parameter), 

&,(TI = F L [ k ( T ,  s ’ ) l e ( T ) l ,  s’ E [O, + CO). (39) 

In order to approximate the functional (39), we must specify the topological framet. 
X @  is a normed linear space of vector-valued functions f in E; such that 
&‘@(E:) = { f ( s ’ ) ,  s’ E [0, + a)). &‘ is the corresponding subspace such that 
%(E;) = { f ( s ’ ) ;  s’ €10, + CO)}. Letf ,  be the restriction off in 30, + CO). We define the 
norm in &@’ as 

I l f l l@ = lIf,ll +If(s’ = 0)l. (40) 

A Hilbert space structure is given to X‘@ by introducing an influence function h(s’) 
which is positive, monotonic, with domain [0, + CO), and decreasing fast enough to be 

t The same method of approximation has been used in different papers, for instance, in Maugin (1971a, 
1973h). 
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square integrable. We take h(s’ = 0) = 1. We set 
11.7 

i l f l l h  = ( Jr I f ( s ’ ) 1 2 h ( s ’ ) 2  d s f )  9 

i l f l l f  = I l f l l h + l f ( s ‘  = O)l’ (41) 

In %h and X f ,  we have I( f 1 1  h < + CO and / I f  1 1  f < + CO respectively. In yioh, the inner 
product corresponding to the norm (41) is written 

( A  g ) h  = sw SLK[L(s’)gK(s’)h(s’)2 ds’. 
0 

A natural choice for h is (k is a parameter) 

h(k, s’) = exp( - s‘/2k), k > 0. (43) 

This means that the distant past history of 8 ,  will not affect much the conduction 
behaviour of the material at  event point P(s = z) P(s‘ = 0). Following the modern 
terminology (cf Truesdell and No11 1965), we can say that the material has a fading 
‘memory’. We suppose that the functional P o f  equation (39) has for domain [0, + x) an 
open set D of 2: and possesses Frechet derivatives DQ”.F[d,] up to the order NI. These 
are bounded, symmetric, n-linear forms in X?, and they are continuous with respect to the 
product topology of their arguments. Considering the expansion of the functional 9 
about the present history 8,(~, 0) in %f,  we have 

(44) 
N 1  

n = l  n .  QLh) = fL(O,(z, o))+ 1 y @ ” ~ ~ [ 8 , ( ~ ,  s’)ie(~)i +gL{*[e,i} 

where the remainder Y is a vector-valued functional of the order of ( l l * l \h )N.  From 
the inequality (29), we see, by an argument of continuity, that Q K  vanishes whenever 
8, vanishes. It follows that the ‘thermodynamical equilibrium’ term fL(e,(~,  0) = 0) 
must vanish in equation (44) since its argument is identically zero. Further, the first 
FrCchet derivative D @ F L  in the expansion (44), being a bounded-thus continuous- 
linear form in %:, it can only be of the form (after the Fischer-Riesz theorem) 

D@FL = ( r f ( S f ) ,  8,(~, s ’ ) ) ,  

D @ F L  = (rf(s’), 1 ) h e K ( z ) - ( r f ( s ’ ) ,  e & - s ’ ) ) h  

r .K(s’)  = -:# 7 

(45) 

(46) 
where 1 is the unit linear operator. We consider isotropic media (in the LRRS) so that 
the linear operator rf must be spherical. That is, 

(47) 

where x is a constant. Thus is independent of s‘ and &,rf = 0. x may be dependent 
on 8 but, in the present study, the latter is considered&-cf equation ( 3 9 k a s  constant 
along (WxK) although it varies from one trajectory to a neighbouring one. On account 
of equations (43) and (47), the expression (46) becomes 

which, after equation (38), reads 

k L  L 

t Definitions of nonlinear functional analysis may be found in Rall (1971). 
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Defining 
h(k, s’) = h(k, s’)’ = exp( - s’/k),  

we can write this equation as 

(49) 

The term within square brackets is none other than the convolution product on 9‘(Rf), 
the index L being fixed, of 9 h / 9 z  and Or. in the sense of distribution theory (cf Schwartz 
1966). Here 9 / 9 7  indicates differentiation with respect to the proper time in the sense 
of distribution theory. Given the properties of the product of convolution, we have 

Hence we can write the equation (44) in the form 
N t  

in which we used the notation 

The operator 9- which depends upon the parameter k is called the inverse relaxation 
operator for reasons explained below. If we neglect terms of the order of (IlPIl,,) in 
equation (5 l), we obtain the following functional heat conduction equation : 

Q d 7 )  = - x ( W -  l ( k ) { O L }  (53) 
which, according to the expression (50), is of the integral type. 

On account of equation (49), it is not difficult to see that the result (53) is none other 
than the integral-up to a constant that depends only on XK and must be equal to zero- 
of the following differential equation (in the sense of distribution theory, cf Schwartz 
1966), at any event point p(s) E (V,K): 

(54) W ( k )  {QLJ = - x(e)e,(s). 
W ( k )  is the relaxation operator defined as 

( 5 5 )  

k is the relaxation time. Here we have written d/as  instead of 6/6s because Q L  is assumed 
to be expressed as a function of XK and s. The equation (54) which may be considered 
as a differential constitutive equation for the convected heat flux is entirely expressed in 
terms of convected quantities. It is objective and is an approximation to the objective 
functional constitutive equation (39). 

a 
as 

w ( k )  z l+k- - .  

6. Comparison with Kranys’ equation 

It is not difficult to obtain the covariant differential equation that corresponds to the 
equation (54). Indeed, on account of equation ( 5 9 ,  the first of equations (35), and the 
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general formulae (13), we obtain from equation (54) 

X",qa + k ; 4,) = - X ( ~ ) O L .  

Multiplying both sides of this equation by X t f l  and using the first of (5) and the 
second of (20), we obtain the differential equation 

Rf(k)qfl = -x(e)Ja  (57) 

R f ( k )  = P t (  1 + k;). 

with 

( 5 8 )  

We obtain the same equation if we apply the operator R,,(k)-the P L I  relaxation operator 
-to the contravariant four-vector q8. The dissipation inequalities that correspond to 
the heat flux constitu$ve equations (53) and (57) are obtained by substituting the ex- 
pressions of Q L  and 8, provided by these equations in the inequalities (26) and (29) 
respectively. We obtain 

In the first of these we have defined the invariant g L  by 
(y E p , e a  = p " B p  J 

. ,a 6 .  

The inequalities (59) which are, respectively, an integral inequation and a differential 
inequation, must be verified at any event point P(s) E (qXK). 

The equation (56) is objective-ie, it satisfies the PMIR-for all its terms are objective 
according to the statement of the PMIR. In particular, the projected Lie derivative of an 
objective PU tensor field-eg, (f,q,), 3 &q,, cf 5 4 4 s  an objective PU tensor field while 
the projected invariant derivative of the same tensor field-ie, (6qJ6s),-is not ob- 
jective?. The heat conduction law postulated by Kranys (1966a, b, 1967) is not logically 
deduced as an approximation from a general constitutive equation as it is here in the 
case of equation (57). However its form is very close to that of equation (57), but it is not 
objective since it makes use of the non-objective quantity 6qJ6sS. Then it is not in 
agreement with the principles of formulation recalled in 9 4. Nevertheless, if we neglect 
the nonzero invariant density of heat introduced by Kranys (also, Boillat 1971 ; see our 
comments in the introduction), and consider the purely spatial part of his equation, ie, 

then, considering a local adapted chart xa = (xk ,  k = 1,2,3 ; x 4  = ct) ,  such that 
ua = (U' = 0 ;  u4 = c), and neglecting products of gradients of the four-velocity with q,, 
with c - CO, we obtain from both equations (60) and (57) the following three-dimensional 
limit: 

i = 1,2, 3. 

t These propositions are established in Maugin (1973f. appendix B). 

Synge's and Bennounxarter-Quintana's constitutive equations, cf Maugin 1973f). 
The same problem arises in the study of constitutive equations for elasticity in general relativity (compare 
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This is the equation originally proposed by Cattaneo (1948) and Vernotte (1958) in rigid 
heat conductors. Note that, in deformable bodies, the partial derivative d/Bt should be 
replaced by an objective time derivative if this constitutive equation has to be objective 
according to the principles of modern continuum physics (as it is the case with 6qJ6s, the 
usual material time derivative would not be sufficient to satisfy this requirement ; cf 
Truesdell and No11 1965)t. 

7. An alternative formulation 

By considering a different assumption with respect to the functional constitutive 
equation (37), one can arrive at a simple form which differs from (57). Instead of the 
assumption represented by the equation (39), we consider that Q, depends functionally 
on 6 ,  and depends as a function in the usual sense, on e,, ie, 

Q L ( d  = FL[°K(T? s’)leK(z), s’ E [O, + CO). (62) 
We make a smoothness hypothesis quite different from that considered in 8 5 .  We 
approximate the functional (62) by assuming the following : the heat conduction material 
posseses an injnitely short ‘memory’ in the sense that only the very recent past history of 
8, affects the conduction behaviour of the material at event point P(s = t) E P(s’ = 0). 
Mathematically, this reads 

Q L ( T )  = s ’ ) l e K ( s ) ,  s‘ E [O, E )  (63) 

where 8 is arbitrarily small. Then, in the past time neighbourhood M(P)  = [ O , E )  of 
0 s ‘  = 0) E (VXK),  the following Taylor series expansion at s’ = 0 holds if8, is a sufficiently 
smooth function of s’ (s = t - s’): 

In these conditions, the functional (63) can be approximated by the function 

Q d T )  = g,(@,(4, 3 . . . ; e(?)) (64) 
in which 

etc. In the isotropic case, a simple linear approximation to the function g ,  is (time 
derivatives of an order greater than that of the first being neglected) 

with 

The operator W(k‘) which depends on the physical coefficient k‘ has a form similar to 
that of W ( k )  introduced in equation (55). However, whereas W ( k )  acts upon the ‘effect’- 
the heat flux-in equation (54), W(k’) acts upon the ‘cause’-the thermodynamical 
t The same problem arises in the study of classical hypo-elasticity which involves rates of the stress tensor 
(Truesdell and Noll 1965). 
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disequilibrium represented by the temperature gradient. Thus W(k‘)  may be called a 
retardation operator. Performing on equation (65) the same transformation as that 
performed in the preceding section, we can obtain the corresponding covariant ex- 
pression in the form 

(67) 

This constitutive equation is obviously objective. Bressan (1967, footnote p 209) 
postulated a similar form but his is not objective for he used the invariant derivative in 
lieu of the convected derivative. The differential equation corresponding to the dissipa- 
tion inequality when 4,  assumes the form (67) is easily obtained. We shall not give this 
expression. 

One may ask if a constitutive equation of the form (67) solves the paradox of infinite 
propagation velocity of heat disturbances as equation (57) clearly does. In fact, the same 
question may be asked in regard with more general cases. For instance, an obvious 
generalization of both equations (57) and (67) would be 

4,  = - X ( w w 4 8 , ,  R f ( k ’ )  = Pf( 1 + k‘f , ) .  

R;B(k)q, = - ~ R f ( k ’ ) d , ,  (68) 
of which a natural extension (J G Oldroyd, private communication) would seem to be 

in which 

Ro(k ,  = 0) E 1, 

Ri(k i )  = 1 + k,&, k i  # 0, for i 3 1, 

and similar definitions hold for Rj(k;). Equation (68) corresponds to the case n = m = 1, 
and equations (57) and (67) correspond to the cases (n = 1, m = 0) and (n = 0, m = 1) 
respectively. The question which may be raised is the following: while it seems quite 
natural to assume the existence of a relaxation process for heat conductiont, is it accept- 
able physically, in the case (n = 0,m 2 l), that there could be a nonzero heat flux 
produced by a finite rate of increase of temperature gradient even at zero temperature 
gradient, as equation (67) implies. After a classics! argument (due to Coleman 1964) 
the inequality (26) implies that 4. vanishes whenever 8, vanishes (at the same event point) 
if q, is at least a C’ function of 8,. Then it seems that the form (67) is prohibited. More- 
over, from the mathematical viewpoint, it seems necessary that n be strictly greater than 
m in order to yield a strictly hyperbolic system of equations of evolution. This may be 
guessed by induction from the satisfying behaviour obtained with equation (57) but the 
general conjecture is presently outside the scope of this paper. 

8. Rate-type constitutive equations 

We now examine a third way to approximate the constitutive equations (33) for a 
‘simple’ thermodeformable medium. In a former note (Maugin 1973b; also 1973f and 
1973d, appendix), we have introduced a class of relativistic materials referred to as rate- 
type materials. They are defined as follows. First, we introduce the invariant TAB 
t Maxwell (1867) had initially proposed a relaxation process for heat conduction. He later neglected the 
relaxation term by noting that the heat flux is rapidly established. 
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defined from T K L  by the equation 

' A d z )  E T K L ( z ) C A K ( r ) C B L ( 7 )  = t a & z ) X ~ ( 5 ) X % Z ) .  (70) 

Then, taking account of equations (70) and (34), we can define a 'simple' thermodeformable 
medium by the constitutive equations 

(71) 

with s E ( -  CO, T [  and 5 E ( -  CO, z]. These equations are equivalent to equations (33) 
for homogeneous media. After the principle of equipresence, similar functional con- 
stitutive equations hold for the specific internal energy Q and the specific entropy ?. We 
recall that the continuous material considered is of the rate-type if and only if, for any 
dynamical process compatible with the functional equations (71), the functions TAB(z), 
$,(z), C,,(T), e,(z) and e(r) satisfy differential equations of the following form (that we 
write only for the typical dependent variable $, ; a similar, but not necessarily of the 
same order, differential equation holding for TAB. In general, we therefore have to deal 
with a system of differential equations)? at any event point M(s = z) E (%&): 

= f4B[CMMN(S) ,  e .h f (~ ) l cMN(z )9  

Q L ( 4  = &L[C,MN(S), ~ h f ( t ) l C M d 9 ,  e(4ll 

(m) 2 1, (n) = 0, 1,. . . , m -  1 ,  p = O , l ,  . . . ,  P ,  

q =  O , l , . . . , Q ,  r = 0 , 1 ,  . . . ,  R, 

in which g L  is a scalar-valued function in M (a vector-valued function in E:) and 8(p) /6s(p)  
indicates the pth invariant derivative. In equation (72), all dependent and independent 
variables expressed as functions of X K  and s are supposed to be sufficiently smooth in 
order to allow the existence of the different derivatives. g L  has such smoothness properties 
as to ensure that, for each prescribed sufficiently smooth functions O,(t), 6(p)C,,/6s(P), 

the differential equation (72) has a unique solution $,(s = T). Note that, in general, it is 
not possible to reconstruct the corresponding functional equation (71, part two) from 
the relation (72). Obviously, the invariant derivatives of invariants are objective. Then 
the differential constitutive equation (72) which involves rates of the different dependent 
and reduced independent variables satisfies the PMIR. We can also write the equation (72) 
in the form 

6" - 1 ) Q L / a S ( m  - 1 ) 6(r).f .AB/B~(r),  . . . ,and prescribed initial data, for instance, &(to), . . . , I S = T O )  

where, now, k = 0,1,. . . , m. This is a general relation for all types of media. Interesting 
special cases are the following ones : (i) if the medium considered has a local Herglotz- 
Born rigid-body motion, then C,,(s) = 6,, and 6(p)C,,(s)/Gs(p) = 0, p > 0, for all s 
along (WXK) (these are direct consequences of the definition of a Herglotz-Born rigid-body 

t The corresponding differential equation for TAB leads, after approximations in which coupling with heat 
conduction is neglected, to the theory of relativistic hypo-elasticity (cf Maugin 1973b, f). 
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motion ; see Maugin 1973e) and there is no need to consider stresses. Then the equation 
(73) reduces to 

(ii) If the medium considered is aJtuid, then it has no ‘memory’ whatsoever (of any 
peculiar configuration) and its deformation can be described only in terms of rates of 
deformation. However, its constitutive equations may depend on the value of the density 
(cf Truesdell and No11 1965). Then, equation (73) reads 

where, now, p = 1,.  . . , P ,  ie, C,,(z) cannot appear as an argument. In fact, since there 
are no privileged configurations for the study of a fluid, we can take the present con- 
figuration at  M(s = z) E (%?&). Nojing the following general demonstrable results: 

ktimes 

k times k limes 

in which A a g ”  and A 5 . Q  are the PU tensor field and the invariant considered in equation 
(13), we can write, upon using equations (12), (35), (70), (20), (13), and (76), the following 
equation that replaces the equation (75): 

g ( ( g f ) q a ) l >  ( g t ) t u p ) l ,  ( € t ) p a f i ) l y  (€$)dp)l ,  e(t), ~(7)) = 0 (77) 

i n w h i c h k = O , l ,  . . . ,  m , r = 0 , 1 ,  . . . ,  R , p = l ,  . . . ,  P , q = O , l ,  . . . ,  Q. Wehaveno t  
introduced time derivatives of p since it is clear, after the equation of continuity (23, part 
three) which can be written, upon use of equations (9) and (lo), as 

- = f ,p = -pa“ = -1 p a a  
.a Z P  ( f . 9 a p ) l y  6P - 

6s 

that all successive time derivatives of p can be represented by functions of p and the 
successive projected Lie derivatives of Pap only. The latter are already taken into account 
in equation (77). It is now clear, in this formal approach, that, as a consequence of the 
use of the principle of equipresence, the-rate-type heat flux constitutive equation (73)- 
or (77) in the cases of fluids (also linear hypo-elastic solids)--in general takes account of 
the interactions between different transport phenomena. In particular, we see from 
equation (77) that the rate of strain aUp-in other words, the viscosity-might participate 
in the production of heat flux. However, if we consider a simple linear (in the different 
tensorial arguments) approximation to equation (77), not retaining product terms but 
considering that objective time derivatives of the same order are present for the different 
variables, we may write 

(79) 

where the tensorial coefficients introduced eventually depend on p and 8. If taY is the 

q“ + k“€,q, + x@Jp + AaB€,t?, + Bapytpy + CapYgUtpY + Dapyapy + EapY€,apy = 0 
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relativistic stress of a viscous newtonian fluid (ie, tSY is linear in ogY), then the terms involv- 
ing oBY and t,, on the one hand, and those involving fuoSY and futBy on the other, in 
equation (79), can be gathered. 

Now, for isotropy (which is necessarily the case for fluids, cf Truesdell and No11 1965), 
we must havet 

kafl = x " B  = xp"B, AaB = xk'P"@ (80) 
with 

and 
f , ,k = fux = E,k' = 0, 

Baby = CdY = DaBY = E& = 0 

for there exist no odd rank PU tensors such as FSy, Colsy,. . . , since these tensorial co- 
efficients must be expressed by linear combinations of tensor products of the projection 
operator Ps. On account of the expressions (80), the equation (79) reduces to equation 
(68). As we have seen above, the second principle of thermodynamics further requires 
that k' be zero. It thus appears that we obtain the same approximation as that we would 
have obtained by considering the equation (74) for rigid heat conductors ; in other words, 
the coupling between heat flux and, for instance, viscosity, cannot appear within the 
frame of the approximations considered. 

If we had retained product terms in the approximation of equation (77), we could haJe 
objective terms of the form q,o:, o$oiyqy,. . . , but also, terms of the form o$e,, .;8.$Oy, 
etc, (cf Eringen 1970, equation (6.30)) in the resulting approximate equation. It is however 
to be noticed that the equations (71) being functionals on a time interval, there cannot 
be gradients-eg, xEV,pA,-in the differential (with respect to time) equation (72). As a 
consequence, there cannot be any gradients of the form V,t:-and more particularly 
V,t:-in the differential equation (77), explicitly$. It follows that a heat flux constitutive 
equation of the type recently proposed by Stewart§, ie, 

in which 1 is a new physical constant, does not enter in the frame of the theory presented 
here. Further, it is not objective since it makes use of the invariant derivative instead of 
the convected derivative. In fact, if we are confident in the value of the principles of 
formulation recalled in +these principles constitute a formalization of everyday 
experience, intuitive ideas, and circumstances in which simple theories that proved 
to be very efficient were established-then we may doubt the validity of equation (81) 
in spite of its apparently 'physical' derivation. 
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